Day 1 -


Data Analytics: Chair’s Welcome and Opening Remarks


Edge Processing for Data Analytics and Training AI Algorithms

  • How the huge influx of data will require fit-for-purpose architecture. What is the distance from the edge to your device and how to consider this during the creation of your IOT / AI architecture?
  • Discussing how IoT / AI architectures need to be put in place to ensure increased compatibility across domains.
  • Using cloud analytics platforms to derive value from IoT / AI data vs physical gateways -pros and cons.


Keynote: Information is Everything

Data is the new oil is a familiar paradigm but until we learn to process and derive actionable insights from this data how valuable is it? This talk will cover a real life case study where a business has successfully taken data generated by the IoT and converted into into real business actions. Hear about their journey, and their recommendations for uncovering new economic structures made available by access to intelligent data


Networking Break


Leading the way into the new era of IoT analytics with AI

Businesses today are looking to leverage all types of data to promote a data-driven decision making culture for their customers as well as own organizations. Specifically in the Internet of Things (IoT) domain, the amount of data being generated from sensors, devices, equipment, and infrastructure is on a very rapid incline. As a result, there is a tremendous need for the use of analytics algorithms and methodologies along with embedded AI to tackle, understand, and process IoT data to derive meaningful business insights. This session will focus on key aspects of AI as it pertains to IoT and a few customer stories across these domains


Keynote Panel: Data analytics for intelligent decision making

  • Identifying target-rich, high-value data that can be used to generate business intelligence
  • Driving business value with data analytics
  • How to leverage data and analytics to optimize every decision, process and action
  • Real time data analytics in practice – examples of how data is creating business efficiency and revolutionising workin


The collision course between Big Data+AI, Privacy, Ethics and Regulations in the IoT world


Networking Break


Afternoon Keynote: AI, Big Data and Autonomous vehicles


Panel: Big Data – Creating Intelligent Data Models

  • The increased need for big data analytics to drive AI & Machine learning
  • How to successfully unlock unstructured data & transform into learnable features
  • The advancement of self-service big data tools & its benefit for your organisation


What is the state of Hadoop today?


NoSQL for big data analytics: Best practice and use cases

  • NoSQL vs Hadoop vs SQL
  • Enterprise implementations and use cases
  • Advantages of horizontal vs vertical scalability
  • Ensuring greater performance with larger data sets


Case study: How to get the most out of Apache Spark

  • Moving from testing and proof-of-concept through to production applications
  • The industries set to be impacted – financial, manufacturing, pharmaceutical
  • Flexibility and adaptability in workloads


Close of Session

Powered by WishList Member - Membership Software